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S LW D/ Objective

22y

Sloshing and structural dynamics coupling is important in the design phase, modeling, and
control of several aerospace systems: rockets, satellites, and aircrafts.

Fuel tank

Figure: Example of coupling between sloshing and structural dynamics: an integral tank within a wing.

The aim of this work is to develop a data analysis technique able to highlight the
interaction between fluid and structure.
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SLWD/ Data processing strategy (1)

The main idea is to combine Proper Orthogonal Decomposition (POD) and
Wavelet Transform (WT) to analyse an image time-resolved sequence.

N
Z £)i(x) ~ ZZa(Mb, (1)

i=1 j=1

Decomposition characteristics:

» ¢;(x) coherent in space

> a}f-(t) coherent in time
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LOWD,

Data processing strategy (2)

fluid dynamics

images
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LWD/ Data processing strategy (3)

structural dynamics (b)

wavelet coef.
41(t) acceleration w(f,7)

................................ - WT

a() | ¢(r) damping

- oT -

{wg)  spectrum
L

f(t) unsteady frequency

—
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LWD/ Data processing strategy (4)

FSI

y(t) acceleration

POD coef CWT

£ W,, phase delay
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SLOW D/ Experimental setup

, | =0.70m
T !
A : water tank AU(Lw t)
v !' O @ 0@ 66 @]
b @
; ———
‘root tip o
i Eame.ra,EQY ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |
N : :
L =2.35m static load and

release mechanism

Instrumentation and acquisition details:

» Accelerometer — isotron model 65L-100, S = 102.7mV /g, £ =1kHz, TV =65
» Fast camera — photron fastcam SA1.1, f/ = 3kHz, T' = 10s
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Test cases

. 1 =0.70m

t {
“ : water tank A@(L- t)

"o 000 66 @] !
1 1 1 1T 1 1

H-beam
g ——
root tip? x
Lcamera FOV 1
N\
' L =235m static load and
release mechanism
Test Cases:
Water volume ratio: » Test case 1: a =0, dry;
Vi,
o=y > Test case 2: a = 0.3, wet;

» Test case 3: o = 0.5, wet.
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® Data prequalification
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I- WD/ Wavelet Transform of the Acceleration

Structural dynamics

Mode freq. [Hz] Description

fl:l 7.4 1°t mode and 15t harmonic
i 7.9 1t mode and 1% harmonic
fl” 139 15t mode 2" harmonic

f 50.2 2" mode

H—-Beam modes characteristics:

P First mode is affected by an abrupt drift in frequency

from 7.4 to 7.9 Hz;

»  Second mode has the frequency weakly time dependent.

Ty [HZ]

Time [s]

(a) WT of § « =0 "Dry”

2log |w|

n
log |w|
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LWD/ Wavelet Coefficients of the Acceleration

t)

!
1

2logw(f,
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SLWD/ Wavelet-Based Damping

ool - [——a=0 ||®  Wavelet-based damping®:
= 0.06 | e
C 004 . 1 0In|w(f],)|
0.02 f ¢V(r) = _ETI (2)

ol » Test case 2-3: damping is higher and

008 | ' ' -0 ||® appears before than case 1 (see fig.a)
E 0.06 : » Test case 2-3: damping is higher for all
< 8'82 _ acceleration values (see fig.b)

» Damping is a function of the acceleration
|w] == f(y)

[1] Chen et al., Wavelet analysis for identification of damping ratios and natural frequencies, J. Sound Vib., 323(1-2), 130-147.
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sI-\A/D,Fourier Transfrom of the Wavelet Coefficients

|F[21log w(fa,t)]|

2 4 6 8 10 12 14 16 18 20
flHZ]

The frequency of the second mode oscillates with a frequency f{, equal to the frequency
of the first mode:

fo(t) = (f(t)) + csin (27£t) (3)
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SLWD/ Simple Mathematical Model

From the experimental evidences, we have a preliminary idea of the mathematical model:
» for the first mode
V4 2((7)wry +wiy =0 (4)
» for the second mode
Y+ 20(7)wa(t)y + wi(t)y =0 (5)
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L WD/ Test case 3: stabilised Spectra

Structural dynamics

Mode freq. [Hz] Description 0.5
) 7.4 1t mode-15t harmonic — 04
i 7.9 15t mode— 15t harmonic /,3 0.3
! 13.9 15t mode— 2" harmonic = 0.2
f 50.2 2" mode 0.1

Fluid dynamics

Mode freq. [Hz] Description 1072
fl, 7.4 Coupling between ¢1 and y I

fl/r 7.9 Coupling- betwee:n $3-¢p4 and y =

fl/cl 3.7 symmetric sloshing 3 .
fleh 4.0 symmetric sloshing 10°
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LW D/ Wavelet Coherency

Ip|H2]

Fluid dynamics

inti o 102 DOSEORIPIYT I RERUN

Mode frequency [Hz] Description 3 i) AL TE (R
f, 7.4 Coupling ¢1 and y (all the time) -
oy 7.9 Coupling ¢3 and ¢4 (coherent regime) —
fy 37 symmetric sloshing (no coupling) =
fln 4.0 No coupling ¢ and y = ?}’ E

&0

3

=

T flF
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LWD/ Summary & Conclusions

1. A novel technique to decompose the hydrodynamic flow field in coherent modes in time
and space (a}j-’ and ¢;) is developed and tested on an experimental database.

2. A wavelet—based damping ratio calculation is applied and it appears to be promising.

3. Water contributes to increase the damping ratio.

4. The frequency of the second mode of the beam is not constant in time and oscillates
with the same frequency as the first mode.

5. A simple mathematical model for the first and second mode of the beam is proposed

6. Strong coupling between structural dynamics and hydrodynamics is detected:

P> ¢ oscillates at the same frequency as the beam for all the time;
» @3 and ¢4 oscillate at the same frequency as the beam only during the coherent regime;
» ¢, no linear coupling with acceleration.
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SLWD/ Future Work
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