

Proper Orthogonal Decomposition and Wavelet Analysis of Sloshing Flows

T. Pagliaroli^{*}, F. Gambioli[†], F. Saltari[‡], J. Cooper^{\mathbf{I}}

*Niccolò Cusano University, [†]Airbus, [‡]Sapienza University of Rome, [&]University of Bristol ⊠tiziano.pagliaroli@unicusano.it

EASN-Italy-2nd/4th September 2020

SLOWD CONFIDENTIA

Overview

Introduction

Material and Methods

Data processing strategies Experimental setup Test cases

Results

Data prequalification Acceleration wavelet transform Wavelet-based damping Mathematical model Proper Orthogonal Decomposition & Wavelet Wavelet Coherency

Sloshing and **structural dynamics** coupling is important in the design phase, modeling, and control of several aerospace systems: rockets, satellites, and aircrafts.

Figure: Example of coupling between sloshing and structural dynamics: an integral tank within a wing.

The aim of this work is to develop a **data analysis technique** able to highlight the interaction between fluid and structure.

Data processing strategy (1)

The main idea is to **combine Proper Orthogonal Decomposition** (POD) and **Wavelet Transform** (WT) to analyse an image time-resolved sequence.

$$I(\mathbf{x},t) pprox \sum_{i=1}^{N} a_i(t) \phi_i(\mathbf{x}) pprox \sum_{i=1}^{N} \sum_{j=1}^{M} a_{ij}^{\psi}(t) \phi_i(\mathbf{x})$$

Decomposition characteristics:

- $\phi_i(\mathbf{x})$ coherent in space
- $a_{ij}^{\psi}(t)$ coherent in time

(1)

Data processing strategy (2)

Data processing strategy (3)

Data processing strategy (4)

EASN-Italy-2nd/4th September 2020

Instrumentation and acquisition details:

- Accelerometer isotron model 65L-100, S = 102.7 mV/g, $f_s^{\ddot{y}} = 1 kHz$, $T^{\ddot{y}} = 6 s$
- Fast camera photron fastcam SA1.1, $f_s^{\prime} = 3kHz$, $T^{\prime} = 10 s$

Test Cases:

- Test case 1: $\alpha = 0$, dry;
- Test case 2: $\alpha = 0.3$, wet;
- Test case 3: $\alpha = 0.5$, wet.

Water volume ratio:

 $\alpha = \frac{V_w}{V_{tot}}$

Tiziano Pagliaroli

EASN-Italy-2nd/4th September 2020

Data prequalification

EASN-Italy-2nd/4th September 2020

Wavelet Transform of the Acceleration

H-Beam modes characteristics:

- First mode is affected by an abrupt drift in frequency from 7.4 to 7.9 Hz;
- Second mode has the frequency weakly time dependent.

SLOWD

Wavelet-Based Damping

Wavelet-based damping¹:

$$\zeta^{\psi}(\tau) = -\frac{1}{\omega_n} \frac{\partial \ln |w(f'_1, \tau)|}{\partial \tau}$$
(2)

- Test case 2–3: damping is higher and appears before than case 1 (see fig.a)
- Test case 2–3: damping is higher for all acceleration values (see fig.b)
- Damping is a function of the acceleration $\rightarrow \zeta = f(\ddot{y})$

[1] Chen et al., Wavelet analysis for identification of damping ratios and natural frequencies, J. Sound Vib., 323(1-2), 130-147.

The **frequency of the second mode oscillates** with a frequency f'_1 , equal to the frequency of the first mode:

$$f_2(t) = \langle f_2(t) \rangle + c \sin\left(2\pi f_1' t\right) \tag{3}$$

From the experimental evidences, we have a preliminary idea of the mathematical model:

► for the first mode

$$\ddot{y} + 2\zeta(\ddot{y})\omega_1\dot{y} + \omega_1^2 y = 0 \tag{4}$$

► for the second mode

$$\ddot{y} + 2\zeta(\ddot{y})\omega_2(t)\dot{y} + \omega_2^2(t)y = 0 \tag{5}$$

SLOWD Proper Orthogonal Decomposition & Wavelet

EASN-Italy-2nd/4th September 2020

CONFIDENTIAL

Test case 3: stabilised Spectra

Mode	Structural dynamics freq. [Hz]	Description
$f_{1'}$	7.4	1 st mode–1 st harmonic
f_{1h}^{γ}	7.9	1 st mode– 1 st harmonic
$f_1^{\prime\prime}$	13.9	1 st mode– 2 nd harmonic
f_2	50.2	2 nd mode

Mode	Fluid dynamics freq. [Hz]	Description
f_{1l}'	7.4	Coupling between ϕ_1 and \ddot{y}
$f_{1h}^{\prime\prime}$	7.9	Coupling between ϕ_3 - ϕ_4 and \ddot{y}
$f_{1cl}^{\prime\prime}$	3.7	symmetric sloshing
$f_{1ch}^{\prime c}$	4.0	symmetric sloshing

Tiziano Pagliaroli

EASN-Italy-2nd/4th September 2020

CONFIDENTIAL

Wavelet Coherency

Mode	Fluid dynamics frequency [Hz]	Description
$f_{1/}'$	7.4	Coupling ϕ_1 and \ddot{y} (all the time)
$f_{1b}^{\tilde{\prime}}$	7.9	Coupling ϕ_3 and ϕ_4 (coherent regime)
$f_{1cl}^{\tilde{\prime}}$	3.7	symmetric sloshing (no coupling)
f_{1ch}^{\prime}	4.0	No coupling ϕ_2 and \ddot{y}

Tiziano Pagliaroli

SLO

-

WD

EASN-Italy-2nd/4th September 2020

CONFIDENTIAL

- 1. A novel technique to decompose the hydrodynamic flow field in coherent modes in time and space $(a_{ii}^{\psi} \text{ and } \phi_i)$ is developed and tested on an experimental database.
- 2. A wavelet-based damping ratio calculation is applied and it appears to be promising.
- 3. Water contributes to increase the damping ratio.
- 4. The frequency of the second mode of the beam is not constant in time and oscillates with the same frequency as the first mode.
- 5. A simple mathematical model for the first and second mode of the beam is proposed
- 6. Strong coupling between structural dynamics and hydrodynamics is detected:
 - $\blacktriangleright \ \phi_1$ oscillates at the same frequency as the beam for all the time;
 - ϕ_3 and ϕ_4 oscillate at the same frequency as the beam only during the coherent regime;
 - ϕ_2 no linear coupling with acceleration.

Future Work

Tiziano Pagliaroli

SLOWD

EASN-Italy-2nd/4th September 2020

SLOWD CONFIDEN

(當,響, 益, 寒 ダ, 愛, 業—, ☆, ●, 益, 為, 益, Ⅲ, ☎, ♀, 魚, 當,響, 台, 寒 ダ, 愛, 業—, ☆, ●, △, 為, 益, Ⅲ,
(☎, ♀, 魚, 當,響, 台, 寒 ダ, 愛, 業—, ☆, ●, △, 為, △, Ⅲ, ☎, ♀, 魚, 當,響, 台, 寒 ダ, 愛, 業—, ☆, ●, △, 為, △, Ⅲ, ☎, ♀, 魚, 當,響, 台, 寒 ダ, 愛, 素—, ☆, ●, △, 為, △, Ⅲ, ☎, ♀, 魚, 當,響, 台, 寒 ダ, 愛, 素—, ☆, ●, △, 為, △, Ⅲ, ☎, ♀, 魚, 當,響, 台, 寒 ダ, 愛, ※—, ☆, ●, △, 為, △, Ⅲ, ☎, ♀, 魚, 當,響, 台, 寒 ダ, 愛, ※—, ☆, ●, △, 為, △, Ⅲ, ☎, ♀, 魚, 當, 響, 台, 寒 Ø, Ø, ※—, ☆, ●, △, 為, △, Ⅲ, ☎, ♀, 魚, 當, 響, 台, 寒 Ø, Ø, ※—, ☆, ●, △, 為, △, Ⅲ, ☎, ♀, 魚, 當, 響, 台, 寒 Ø, Ø, ※

Thank you for your Attention

 $\begin{array}{c} & & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$

CONFIDENTIA